MEMS motion sensor: 3-axis digital output gyroscope LGA-16L 4 x 4 x 1.1 mm³ #### Product status link I3G4250D | Product summary | | | | |------------------------|------------------------------|--|--| | Order code | I3G4250DTR | | | | Temperature range [°C] | -40 to +85 | | | | Package | LGA-16L
(4 x 4 x 1.1 mm³) | | | | Packing | Tape and reel | | | #### Product resources TN0018 (design and soldering) #### Product label #### **Features** - Wide supply voltage: 2.4 V to 3.6 V - Selectable full scale (±245/±500/±2000 dps) - I²C/SPI digital output interface - 16-bit rate value data output - 8-bit temperature data output - Two digital output lines (interrupt and data ready) - Integrated low-pass and high-pass filters with user-selectable bandwidth - Ultrastable over temperature and time - Low-voltage-compatible I/Os (1.8 V) - Embedded power-down and sleep mode - Embedded temperature sensor - Embedded FIFO - · High shock survivability - Extended operating temperature range (-40°C to +85°C) - ECOPACK and RoHS compliant #### **Applications** - Industrial applications - Navigation systems and telematics - Motion control with MMI (man-machine interface) - Appliances and robotics #### **Description** The I3G4250D is a low-power 3-axis angular rate sensor able to provide unprecedented stability at zero-rate level and sensitivity over temperature and time. It includes a sensing element and an IC interface capable of providing the measured angular rate to the application through a standard SPI digital interface. An I²C compatible interface is also available. The sensing element is manufactured using a dedicated micromachining process developed by STMicroelectronics to produce inertial sensors and actuators on silicon wafers. The IC interface is manufactured using a CMOS process that allows a high level of integration to design a dedicated circuit that is trimmed to better match the characteristics of the sensing element. The device has a selectable full scale ($\pm 245/\pm 500/\pm 2000$ dps) and is capable of measuring rates with a user-selectable bandwidth. The I3G4250D is available in a plastic, land grid array (LGA) package and operates within a temperature range of -40°C to +85°C. DRDY/INT2 # Block diagram and pin description MIXER LOW-PASS FILTER CHARGE AMP FILTERING D I G I T A L ___ CS __ SCL/SPC __ SDA/SDO/SDI __ SDO A D C T E M P E R A T U R E A D C 2 DRIVING MASS Feedback loop CLOCK & PHASE GENERATOR CONTROLLOGIC INT1 TRIMMING CIRCUITS REFERENCE FIFO & INTERRUPT GEN. Figure 1. Block diagram The vibration of the structure is maintained by the drive circuitry in a feedback loop. The sensing signal is filtered and appears as a digital signal at the output. DS10938 - Rev 3 page 2/41 # 1.1 Pin description Figure 2. Pin connections Table 1. Pin description | Pin# | Name | Function | | |------|-----------|--|--| | 1 | Vdd_IO | Power supply for I/O pins | | | 2 | SCL | I ² C serial clock (SCL) | | | 2 | SPC | SPI serial port clock (SPC) | | | | SDA | I ² C serial data (SDA) | | | 3 | SDI | SPI serial data input (SDI) | | | | SDO | 3-wire interface serial data output (SDO) | | | 4 | SDO | SPI serial data output (SDO) | | | | SA0 | I ² C least significant bit of the device address (SA0) | | | | | Enable SPI | | | 5 | CS | I²C/SPI mode selection | | | | | (1: SPI idle mode / I ² C communication enabled; | | | | | 0: SPI communication mode / I ² C disabled) | | | 6 | DRDY/INT2 | Data ready / FIFO interrupt | | | 7 | INT1 | Programmable interrupt | | | 8 | Reserved | Connect to GND | | | 9 | Reserved | Connect to GND | | | 10 | Reserved | Connect to GND | | | 11 | Reserved | Connect to GND | | | 12 | Reserved | Connect to GND | | | 13 | GND | 0 V supply | | | 14 | PLLFILT | Phase-locked loop filter (see Figure 3) | | | 15 | Reserved | Connect to Vdd | | | 16 | Vdd | Power supply | | DS10938 - Rev 3 page 3/41 Figure 3. I3G4250D external low-pass filter Note: Pin 14 PLLFILT maximum voltage level is equal to Vdd. Table 2. Filter values | Parameter | Typical value | |-----------|---------------| | C1 | 10 nF | | C2 | 470 nF | | R2 | 10 kΩ | DS10938 - Rev 3 page 4/41 # Mechanical and electrical characteristics #### 2.1 Mechanical characteristics @Vdd = 3.0 V, T = +25°C, unless otherwise noted. The product is factory calibrated at 3.0 V. The operational power supply range is specified in the following table. **Table 3. Mechanical characteristics** | Symbol | Parameter | Test condition | Min. ⁽¹⁾ | Typ. ⁽²⁾ | Max. ⁽¹⁾ | Unit | |--------|--|------------------------|---------------------|---------------------|---------------------|------------| | | | | | ±245 | | | | FS | Measurement range ⁽³⁾ | User-selectable | | ±500 | | dps | | | | | | ±2000 | | | | | | FS = ±245 dps | 7.4 | 8.75 | 10.1 | | | So | Sensitivity ⁽⁴⁾ | FS = ±500 dps | 14.8 | 17.50 | 19.8 | mdps/digit | | | | FS = ±2000 dps | 59.2 | 70 | 79.3 | | | SoDr | Sensitivity change vs. temperature | From -40°C to +85°C | | ±2 | | % | | | Digital zero-rate level ⁽⁴⁾ | FS = ±245 dps | -25 | ±10 | +25 | | | DVoff | | FS = ±500 dps | -37.5 | ±15 | +37.5 | dps | | | | FS = ±2000 dps | -187.5 | ±75 | +187.5 | | | OffDr | Zero reto lovel change ve temperature | FS = ±245 dps | | ±0.03 | | dna/°C | | Olibi | Zero-rate level change vs. temperature | FS = ±2000 dps | | ±0.04 | | dps/°C | | NL | Nonlinearity ⁽³⁾ | Best-fit straight line | -5 | 0.2 | +5 | % FS | | | | FS = ±245 dps | | 130 | | | | DST | Self-test output change | FS = ±500 dps | | 200 | | dps | | | | FS = ±2000 dps | | 530 | | | | Rn | Rate noise density | BW = 50 Hz | | 0.03 | | dps/√Hz | | ODR | Digital output data rate | | | 105/208/
420/840 | | Hz | | Тор | Operating temperature range | | -40 | | +85 | °C | ^{1.} Minimum and maximum values are not guaranteed; based on characterization data. DS10938 - Rev 3 page 5/41 ^{2.} Typical specifications are not guaranteed; typical values at +25°C. ^{3.} Guaranteed by design. ^{4.} Min/Max values for DVoff are across temperature (-40°C to 85°C) and after MSL3 preconditioning. Based on characterization data. Not guaranteed and not tested in production. #### 2.2 Electrical characteristics @Vdd = 3.0 V, T = +25°C, unless otherwise noted. The product is factory calibrated at 3.0 V. Table 4. Electrical characteristics | Symbol | Parameter | Test condition | Min. ⁽¹⁾ | Typ. ⁽²⁾ | Max. ⁽¹⁾ | Unit | |--------|--|---------------------------------|---------------------|---------------------|---------------------|------| | Vdd | Supply voltage | | 2.4 | 3.0 | 3.6 | V | | Vdd_IO | I/O pins supply voltage ⁽³⁾ | | 1.71 | | Vdd+0.1 | V | | ldd | Supply current | | | 6.1 | | mA | | IddSL | Supply current in sleep mode ⁽⁴⁾ | Selectable by digital interface | | 1.5 | | mA | | IddPdn | Supply current in power-down mode ⁽⁵⁾ | Selectable by digital interface | | 5 | | μA | | Тор | Operating temperature range | | -40 | | +85 | °C | - 1. Minimum and maximum values are not guaranteed, based on characterization data. - 2. Typical specifications are not guaranteed; typical values at +25°C. - 3. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off. - 4. Sleep mode introduces a faster turn-on time compared to power-down mode. - 5. Verified at wafer level #### 2.3 Temperature sensor characteristics @Vdd = 3.0 V, T = 25°C, unless otherwise noted. The product is factory calibrated at 3.0 V. Table 5. Temperature sensor characteristics | Symbol | Parameter | Test condition | Min. | Typ. ⁽¹⁾ | Max. | Unit | |--------|--|----------------|------|---------------------|------|----------| | TSDr | Temperature sensor output change vs. temperature | | | -1 | | °C/digit | | TODR | Temperature refresh rate | | | 1 | | Hz | | Тор | Operating temperature range | | -40 | | +85 | °C | 1. Typical specifications are not guaranteed; typical values at +25°C. DS10938 - Rev 3 page 6/41 #### 2.4 Communication interface characteristics #### 2.4.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 6. SPI slave timing values | Symbol | Parameter | Val | Unit | | |----------------------|-------------------------|------|------|------| | Symbol | r ai ailletei | Min. | Max. | Omit | | t _{c(SPC)} | SPI clock cycle | 100 | | ns | | f _{c(SPC)} | SPI clock frequency | | 10 | MHz | | ts _{u(CS)} | CS setup time | 5 | | | | t _{h(CS)} | CS hold time | 8 | | | | t _{su(SI)} | SDI input setup time | 5 | | | | t _{h(SI)} | SDI input hold time | 15 | | ns | | t _{v(SO)} | SDO valid output time | | 50 | | | t _{h(SO)} | SDO output hold time | 6 | | | | t _{dis(SO)} | SDO output disable time | | 50 | | ^{1.} Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. Figure 4. SPI slave timing diagram Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO for both input and output ports. DS10938 - Rev 3 page 7/41 #### 2.4.2 I²C - inter IC control interface Subject to general operating conditions for Vdd and Top. Table 7. I²C slave timing values | Symbol | Parameter - | I ² C standard mode ⁽¹⁾ | | I ² C fast mode ⁽¹⁾ | | Unit | |-----------------------|--|---|------|---|------|-------| | Зушьог | | Min. | Max. | Min. | Max. | Oiiit | | f _(SCL) | SCL clock frequency | 0 | 100 | 0 | 400 | kHz | | t _{w(SCLL)} | SCL clock low time | 4.7 | | 1.3 | | | | t _{w(SCLH)} | SCL clock high time | 4.0 | | 0.6 | | μs | | t _{su(SDA)} | SDA setup time | 250 | | 100 | | ns | | t _{h(SDA)} | SDA data hold time | 0 | 3.45 | 0 | 0.9 | μs | | t _{h(ST)} | START condition hold time | 4 | | 0.6 | | | | t
_{su(SR)} | Repeated START condition setup time | 4.7 | | 0.6 | | | | t _{su(SP)} | STOP condition setup time | 4 | | 0.6 | | μs | | t _{w(SP:SR)} | Bus free time between STOP and START condition | 4.7 | | 1.3 | | | ^{1.} Data based on standard I²C protocol requirement, not tested in production. Figure 5. I²C slave timing diagram Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO for both ports. DS10938 - Rev 3 page 8/41 ## 2.5 Absolute maximum ratings Any stress above that listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 8. Absolute maximum ratings | Symbol | Ratings | Maximum value | Unit | |------------------|------------------------------------|---------------|------| | Vdd | Supply voltage | -0.3 to +4.8 | V | | T _{STG} | Storage temperature range | -40 to +125 | °C | | Sg | Acceleration g for 0.1 ms | 10000 | g | | ESD | Electrostatic discharge protection | 2 (HBM) | kV | This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part. This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part. DS10938 - Rev 3 page 9/41 #### 2.6 Terminology #### 2.6.1 Sensitivity An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time. #### 2.6.2 Zero-rate level The zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and, therefore, the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time. #### 2.6.3 Stability over temperature and time Thanks to the unique single-driving mass approach and optimized design, ST gyroscopes are able to guarantee a perfect match of the MEMS mechanical mass and the ASIC interface, and deliver unprecedented levels of stability over temperature and time. With the zero-rate level and sensitivity performance, up to ten times better than equivalent products currently available on the market, the I3G4250D allows the user to avoid any further compensation and calibration during production for a faster time-to-market, easy implementation in applications, higher performance, and cost saving. #### 2.7 Soldering information The LGA package is compliant with the ECOPACK and RoHS standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Leave "pin 1 indicator" unconnected during soldering. For land pattern and soldering recommendations, consult technical note TN0018 available on www.st.com. DS10938 - Rev 3 page 10/41 # 3 Main digital blocks # 3.1 Block diagram Figure 6. Block diagram DS10938 - Rev 3 page 11/41 #### 3.2 FIFO The I3G4250D embeds a 32-slot, 16-bit data FIFO for each of the three output channels: yaw, pitch, and roll. This allows consistent power saving for the system, as the host processor does not need to continuously poll data from the sensor. Instead, it can wake up only when needed and burst the significant data out from the FIFO. This buffer can work in three different modes. Each mode is selected by the FIFO_MODE bits in FIFO_CTRL_REG (2Eh). Programmable watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3 (22h), and event detection information is available in FIFO_SRC_REG (2Fh). The watermark level can be configured using the WTM4:0 bits in FIFO_CTRL_REG (2Eh). #### 3.2.1 Bypass mode In bypass mode, the FIFO is not operational and for this reason it remains empty. As illustrated in the following figure, only the first address is used for each channel. The remaining FIFO slots are empty. When new data is available, the old data is overwritten. Figure 7. Bypass mode DS10938 - Rev 3 page 12/41 #### 3.2.2 FIFO mode In FIFO mode, data from the yaw, pitch, and roll channels are stored in the FIFO. A watermark interrupt can be enabled (I2_WMK bit in CTRL_REG3 (22h)), which is triggered when the FIFO is filled to the level specified by the WTM4:0 bits of FIFO_CTRL_REG (2Eh). The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch, and roll). When full, the FIFO stops collecting data from the input channels. To restart data collection, it is necessary to write FIFO_CTRL_REG (2Eh) back to bypass mode. FIFO mode is represented in the following figure. Figure 8. FIFO mode #### 3.2.3 Stream mode In stream mode, data from yaw, pitch, and roll measurements are stored in the FIFO. A watermark interrupt can be enabled and set as in FIFO mode. The FIFO continues filling until full (32 slots of 16-bit data for yaw, pitch, and roll). When full, the FIFO discards the older data as the new data arrives. Programmable watermark level events can be enabled to generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3 (22h)). Stream mode is represented in the following figure. Figure 9. Stream mode DS10938 - Rev 3 page 13/41 #### 3.2.4 Retrieving data from FIFO FIFO data is read from the OUT_X, OUT_Y, and OUT_Z registers. When the FIFO is in stream, bypass or FIFO mode, a read operation to the OUT_X, OUT_Y or OUT_Z registers provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest pitch, roll, and yaw data are placed in the OUT_X, OUT_Y and OUT_Z registers, and both single read and read-burst (X, Y & Z with auto-incremental address) operations can be used. In read-burst mode, when data included in OUT_Z_H is read, the system again starts to read information from OUT_X L. The read from FIFO may be executed either in synchronous or asynchronous mode. For correct data acquisition, the following steps must be respected: - 1. If reading is synchronous, all data should be acquired within one ODR cycle - 2. If reading is asynchronous, an appropriate FIFO access sequence must be applied: - a. Single read from register 28h - b. Multiread: sequentially reading 2Ah, 2Bh, 2Ch, 2Dh, 28h, 29h - c. This procedure must be repeated for each dataset (X/Y/Z) in the FIFO: - -FSS times, if FSS ≤ 31 - -(FSS + 1) times, if (FSS = 31) & (OVR = 1) The following figure illustrates the correct sequence with a flow diagram. Figure 10. FIFO access sequence in asynchronous mode If the above sequence is not followed, the acquisition from FIFO may lead to corrupted data. DS10938 - Rev 3 page 14/41 # 4 Application hints Figure 11. I3G4250D electrical connections and external component values Power supply decoupling capacitors (100 nF ceramic or polyester +10 μ F) should be placed as near as possible to the device (common design practice). If Vdd and Vdd_IO are not connected together, power supply decoupling capacitors (100 nF and 10 μ F between Vdd and common ground, 100 nF between Vdd_IO and common ground) should be placed as near as possible to the device (common design practice). The I3G4250D IC includes a PLL (phase-locked loop) circuit to synchronize driving and sensing interfaces. Capacitors and resistors must be connected to the PLLFILT pin (as shown in Figure 11) to implement a second-order low-pass filter. The following table summarizes the PLL low-pass filter component values. Table 9. PLL low-pass filter component values | Component | Value | |-----------|--------------| | C1 | 10 nF ± 10% | | C2 | 470 nF ± 10% | | R2 | 10 kΩ ± 10% | DS10938 - Rev 3 page 15/41 ## 5 Digital interfaces The registers embedded in the I3G4250D may be accessed through both the I²C and SPI serial interfaces. The latter may be software-configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped to the same pins. To select/exploit the I²C interface, the CS line must be tied high (that is, connected to Vdd_IO). Table 10. Serial interface pin description | Pin name | Pin description | |-------------|---| | | Enable SPI | | CS | I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled; | | | 0: SPI communication mode / I ² C disabled) | | SCL/SPC | I ² C serial clock (SCL) | | 3CL/3FC | SPI serial port clock (SPC) | | | I ² C serial data (SDA) | | SDA/SDI/SDO | SPI serial data input (SDI) | | | 3-wire interface serial data output (SDO) | | SDO | SPI serial data output (SDO) | | | I ² C least significant bit of the device address | #### 5.1 I²C serial interface The I3G4250D I²C is a bus slave. The I²C is employed to write data to registers whose content can also be read back. The relevant I²C terminology is given in the table below. Table 11. I²C terminology | Term | Description | |---|--| | Transmitter | The device that sends data to the bus | | Receiver | The device that receives data from the bus | | Master The device that initiates a transfer, generates clock signals, and terminates a transfer | | | Slave | The device addressed by the master | There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both lines must be connected to Vdd_IO through an external pull-up resistor. When the bus is free both the lines are high. The I²C interface supports fast mode (400 kHz) I²C standards as well as
normal mode. #### 5.1.1 I²C operation The transaction on the bus is started through a start (ST) signal. A start condition is defined as a high to low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first 7 bits after a start condition with its address. If they match, the device considers itself addressed by the master. The slave address (SAD) associated with the I3G4250D is 110100xb. The SDO pin can be used to modify the least significant bit (LSb) of the device address. If the SDO pin is connected to the voltage supply, LSb is 1 (address 1101001b). Otherwise, when the SDO pin is connected to ground, the LSb value is 0 (address 1101000b). This solution permits the connection and addressing of two different gyroscopes to the same I²C bus. DS10938 - Rev 3 page 16/41 Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver that has been addressed is obliged to generate an acknowledge after each byte of data received. The I²C embedded in the I3G4250D behaves like a slave device, and the following protocol must be adhered to. After the start (ST) condition, a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit subaddress is transmitted. The 7 LSb represent the actual register address while the MSb enables address auto-increment. If the MSb of the SUB field is 1, the SUB (register address) is automatically incremented to allow multiple data read/write. The slave address is completed with a read/write bit. If the bit is 1 (read), a repeated start (SR) condition must be issued after the two subaddress bytes; if the bit is 0 (write) the master transmits to the slave with the direction unchanged. The following table describes how the SAD+read/write bit pattern is composed, listing all the possible configurations. Table 12. SAD+read/write patterns | Command | SAD[6:1] | SAD[0]= SA0 | R/W | SAD+R/W | |---------|----------|-------------|-----|----------------| | Read | 110100 | 0 | 1 | 11010001 (D1h) | | Write | 110100 | 0 | 0 | 11010000 (D0h) | | Read | 110100 | 1 | 1 | 11010011 (D3h) | | Write | 110100 | 1 | 0 | 11010010 (D2h) | Table 13. Transfer when master is writing one byte to slave | Master | ST | SAD+ W | | SUB | | DATA | | SP | |--------|----|--------|-----|-----|-----|------|-----|----| | Slave | | | SAK | | SAK | | SAK | | #### Table 14. Transfer when master is writing multiple bytes to slave | Master | ST | SAD+ W | | SUB | | DATA | | DATA | | SP | |--------|----|--------|-----|-----|-----|------|-----|------|-----|----| | Slave | | | SAK | | SAK | | SAK | | SAK | | #### Table 15. Transfer when master is receiving (reading) one byte of data from slave | Master | ST | SAD+ W | | SUB | | SR | SAD+ R | | | NMAK | SP | |--------|----|--------|-----|-----|-----|----|--------|-----|------|------|----| | Slave | | | SAK | | SAK | | | SAK | DATA | | | #### Table 16. Transfer when master is receiving (reading) multiple bytes of data from slave | Master | ST | SAD+
W | | SUB | | SR | SAD+
R | | | MAK | | MAK | | NMAK | SP | |--------|----|-----------|-----|-----|-----|----|-----------|-----|------|-----|------|-----|------|------|----| | Slave | | | SAK | | SAK | | | SAK | DATA | | DATA | | DATA | | | Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (that is, it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low to high transition on the SDA line while the SCL line is high is defined as a stop condition. Each data transfer must be terminated by the generation of a stop (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1, while SUB(6-0) represents the address of the first register to be read. In the presented communication format, MAK is "master acknowledge" and NMAK is "no master acknowledge". DS10938 - Rev 3 page 17/41 #### 5.2 SPI bus interface The SPI is a bus slave. The SPI allows writing to and reading from the device registers. The serial interface interacts with the application using four wires: **CS, SPC, SDI, and SDO**. Figure 12. Read and write protocol **CS** enables the serial port and is controlled by the SPI master. It goes low at the start of the transmission and returns to high at the end. **SPC** is the serial port clock and is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. These lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**. Both the read register and write register commands are completed in 16 clock pulses, or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, and so forth) starts at the last falling edge of **SPC** just before the rising edge of **CS**. **Bit 0**: $R\overline{W}$ bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip drives **SDO** at the start of bit 8. **Bit 1**: $M\overline{S}$ bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto-incremented in multiple read/write commands. Bit 2-7: address AD(5:0). This is the address field of the indexed register. Bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first). Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands, further blocks of 8 clock periods are added. When the MS bit is 0, the address used to read/write data remains the same for every block. When the MS bit is 1, the address used to read/write data is incremented at every block. The function and the behavior of SDI and SDO remain unchanged. DS10938 - Rev 3 page 18/41 #### 5.2.1 SPI read Figure 13. SPI read protocol The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one. Bit 0: READ bit. The value is 1. **Bit 1**: MS bit. When 0, does not increment address; when 1, increments address in multiple reads. Bit 2-7: address AD(5:0). This is the address field of the indexed register. Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). Bit 16-...: data DO(...-8). Further data in multiple byte reads. Figure 14. Multiple byte SPI read protocol (2-byte example) DS10938 - Rev 3 page 19/41 #### 5.2.2 SPI write Figure 15. SPI write protocol The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. Bit 0: WRITE bit. The value is 0. **Bit 1**: $M\overline{S}$ bit. When 0, does not increment address; when 1, increments address in multiple writes. Bit 2-7: address AD(5:0). This is the address field of the indexed register. Bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first). Bit 16-...: data DI(...-8). Further data in multiple byte writes. Figure 16. Multiple byte SPI write protocol (2-byte example) DS10938 - Rev 3 page 20/41 #### 5.2.3 SPI read in 3-wire mode Enter 3-wire mode by setting the SIM (SPI serial interface mode selection) bit to 1 in CTRL_REG2 (21h). Figure 17. SPI read protocol in 3-wire mode The SPI read command is performed with 16 clock pulses: Bit 0: READ bit. The value is 1. **Bit 1**: $M\overline{S}$ bit. When 0, does not increment address; when 1, increments address in multiple reads. Bit 2-7: address AD(5:0). This is the address field of the indexed register. Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode. Note: If the I3G4250D is used in a multi-SPI slave environment (several devices sharing the same SPI bus), the gyroscope can be forced by software to remain in SPI mode. This objective can be achieved by sending, at the beginning of the SPI communication, the following sequence to the device: a = read(0x05) write(0x05, (0x20 OR a)) The programming of this register makes it possible to enhance the robustness of the SPI. DS10938 - Rev 3 page 21/41 # 6 Output register mapping The following table provides a list of the 8-bit registers embedded in the device and the corresponding addresses. Table 17. Register address map | Nama | T | Regis | ster address | Defend | |-----------------------|------|-------|--------------|-----------| | Name | Туре | Hex | Binary | - Default | | Reserved | - | 00-0E | - | - | | WHO_AM_I | R | 0F | 000 1111 | 11010011 | | Reserved | - | 10-1F
 - | - | | CTRL_REG1 | R/W | 20 | 010 0000 | 00000111 | | CTRL_REG2 | R/W | 21 | 010 0001 | 00000000 | | CTRL_REG3 | R/W | 22 | 010 0010 | 00000000 | | CTRL_REG4 | R/W | 23 | 010 0011 | 00000000 | | CTRL_REG5 | R/W | 24 | 010 0100 | 00000000 | | REFERENCE/DATACAPTURE | R/W | 25 | 010 0101 | 00000000 | | OUT_TEMP | R | 26 | 010 0110 | Output | | STATUS_REG | R | 27 | 010 0111 | Output | | OUT_X_L | R | 28 | 010 1000 | Output | | OUT_X_H | R | 29 | 010 1001 | Output | | OUT_Y_L | R | 2A | 010 1010 | Output | | OUT_Y_H | R | 2B | 010 1011 | Output | | OUT_Z_L | R | 2C | 010 1100 | Output | | OUT_Z_H | R | 2D | 010 1101 | Output | | FIFO_CTRL_REG | R/W | 2E | 010 1110 | 00000000 | | FIFO_SRC_REG | R | 2F | 010 1111 | Output | | INT1_CFG | R/W | 30 | 011 0000 | 00000000 | | INT1_SRC | R | 31 | 011 0001 | Output | | INT1_THS_XH | R/W | 32 | 011 0010 | 00000000 | | INT1_THS_XL | R/W | 33 | 011 0011 | 00000000 | | INT1_THS_YH | R/W | 34 | 011 0100 | 00000000 | | INT1_THS_YL | R/W | 35 | 011 0101 | 00000000 | | INT1_THS_ZH | R/W | 36 | 011 0110 | 00000000 | | INT1_THS_ZL | R/W | 37 | 011 0111 | 00000000 | | INT1_DURATION | R/W | 38 | 011 1000 | 00000000 | | | | | | | Reserved registers must not be changed. Writing to those registers may change calibration data and therefore lead to device malfunction. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up. DS10938 - Rev 3 page 22/41 # 7 Register description The device contains a set of registers which are used to control its behavior and to retrieve rate data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface. ## 7.1 WHO_AM_I (0Fh) #### Table 18. WHO_AM_I register | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | |---|---|---|---|---|---|---|---| |---|---|---|---|---|---|---|---| Device identification register # 7.2 CTRL_REG1 (20h) #### Table 19. CTRL_REG1 register | DR1 | DR0 | BW1 | BW0 | PD | Zen | Yen | Xen | |-----|-----|-----|-----|----|-----|-----|-----| |-----|-----|-----|-----|----|-----|-----|-----| #### Table 20. CTRL_REG1 description | Output data rate selection. Refer to Table 21. | |--| | Bandwidth selection. Refer to Table 21. | | Enables power-down mode. Default value: 0 (0: power-down mode, 1: normal mode or sleep mode) | | Enables Z-axis. Default value: 1 | | (0: Z-axis disabled; 1: Z-axis enabled) | | Enables Y-axis. Default value: 1 | | (0: Y-axis disabled; 1: Y-axis enabled) | | Enables X-axis. Default value: 1 (0: X-axis disabled; 1: X-axis enabled) | | | DS10938 - Rev 3 page 23/41 **DR[1:0]** is used to set the ODR selection. **BW [1:0]** is used to set the bandwidth selection. In the following table, all frequencies resulting from a combination of the DR / BW bits are indicated. Table 21. DR and BW configuration | DR [1:0] | BW [1:0] | ODR [Hz] | Cutoff | |----------|----------|----------|--------| | 00 | 00 | 100 | 12.5 | | 00 | 01 | 100 | 25 | | 00 | 10 | 100 | 25 | | 00 | 11 | 100 | 25 | | 01 | 00 | 200 | 12.5 | | 01 | 01 | 200 | 25 | | 01 | 10 | 200 | 50 | | 01 | 11 | 200 | 70 | | 10 | 00 | 400 | 20 | | 10 | 01 | 400 | 25 | | 10 | 10 | 400 | 50 | | 10 | 11 | 400 | 110 | | 11 | 00 | 800 | 30 | | 11 | 01 | 800 | 35 | | 11 | 10 | 800 | 50 | | 11 | 11 | 800 | 110 | A combination of **PD**, **Zen**, **Yen**, and **Xen** are used to set the device in different modes (power-down / normal / sleep mode) according to the following table. Table 22. Configuration of power mode selection | Mode | PD | Zen | Yen | Xen | |------------|----|-----|-----|-----| | Power-down | 0 | - | - | - | | Sleep | 1 | 0 | 0 | 0 | | Normal | 1 | - | - | - | DS10938 - Rev 3 page 24/41 # 7.3 CTRL_REG2 (21h) #### Table 23. CTRL_REG2 register | 0 ⁽¹⁾ | 0 ⁽¹⁾ | HPM1 | HPM0 | HPCF3 | HPCF2 | HPCF1 | HPCF0 | |------------------|------------------|------|------|-------|-------|-------|-------| | | | | | | | | | ^{1.} Value loaded at boot. This value must not be changed. #### Table 24. CTRL_REG2 description | HPM1-HPM0 | High-pass filter mode selection. Default value: 00 Refer to Table 25 | |-------------|--| | HPCF3-HPCF0 | High-pass filter cutoff frequency selection Refer to Table 26 | #### Table 25. High-pass filter mode configuration | HPM1 | НРМ0 | High-pass filter mode | | | |------|------|---|--|--| | 0 | 0 | Normal mode (reset by reading the REFERENCE/DATACAPTURE (25h) register) | | | | 0 | 1 | eference signal for filtering | | | | 1 | 0 | Normal mode (reset by reading the REFERENCE/DATACAPTURE (25h) register) | | | | 1 | 1 | Autoreset on interrupt event | | | #### Table 26. High-pass filter cutoff frequency configuration [Hz] | HPCF[3:0] | ODR = 100 Hz | ODR = 200 Hz | ODR = 400 Hz | ODR = 800 Hz | |-----------|--------------|--------------|--------------|--------------| | 0000 | 8 | 15 | 30 | 56 | | 0001 | 4 | 8 | 15 | 30 | | 0010 | 2 | 4 | 8 | 15 | | 0011 | 1 | 2 | 4 | 8 | | 0100 | 0.5 | 1 | 2 | 4 | | 0101 | 0.2 | 0.5 | 1 | 2 | | 0110 | 0.1 | 0.2 | 0.5 | 1 | | 0111 | 0.05 | 0.1 | 0.2 | 0.5 | | 1000 | 0.02 | 0.05 | 0.1 | 0.2 | | 1001 | 0.01 | 0.02 | 0.05 | 0.1 | DS10938 - Rev 3 page 25/41 # 7.4 CTRL_REG3 (22h) #### Table 27. CTRL_REG3 register | I1 Int1 | I1 Boot | H Lactive | PP OD | I2 DRDY | I2 WTM | I2 ORun | I2 Empty | |---------|---------|------------|-------|----------|------------|-----------|------------| | 11_111 | 11_0000 | TI_LUOTIVC | 11_05 | IZ_DIXDI | 12_******* | 12_011411 | 12_Lilipty | #### Table 28. CTRL_REG3 description | I1_Int1 | Enables nterrupt on the INT1 pin. Default value 0. (0: disable; 1: enable) | |-----------|--| | I1_Boot | Boot status available on INT1. Default value 0. (0: disable; 1: enable) | | H_Lactive | Interrupt active configuration on INT1. Default value 0. (0: high; 1: low) | | PP_OD | Push-pull / open drain. Default value: 0. (0: push-pull; 1: open drain) | | I2_DRDY | Date ready on DRDY/INT2. Default value 0. (0: disable; 1: enable) | | I2_WTM | FIFO watermark interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable) | | I2_ORun | FIFO overrun interrupt on DRDY/INT2 Default value: 0. (0: disable; 1: enable) | | I2_Empty | FIFO empty interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable) | # 7.5 CTRL_REG4 (23h) #### Table 29. CTRL_REG4 register | 0 BLE FS1 FS0 - ST1 ST0 SIM | |---| |---| #### Table 30. CTRL_REG4 description | BLE | Big/little endian data selection. Default value 0. | |---------|--| | | (0: data LSB @ lower address; 1: data MSB @ lower address) | | FS1-FS0 | Full-scale selection. Default value: 00 | | F31-F30 | (00: ±245 dps; 01: ±500 dps; 10: ±2000 dps; 11: ±2000 dps) | | ST1-ST0 | Enables self-test. Default value: 00 | | | (00: self-test disabled; other: see Table 31 | | SIM | SPI serial interface mode selection. Default value: 0 | | | (0: 4-wire interface; 1: 3-wire interface) | #### Table 31. Self-test mode configuration | ST1 | ST0 | Self-test mode | |-----|-----|--------------------------------| | 0 | 0 | Normal mode | | 0 | 1 | Self-test 0 (+) ⁽¹⁾ | | 1 | 0 | | | 1 | 1 | Self-test 1 (-) ⁽¹⁾ | 1. DST sign (absolute value in Table 3). DS10938 - Rev 3 page 26/41 # 7.6 CTRL_REG5 (24h) #### Table 32. CTRL_REG5 register | воот | FIFO EN |
HPen | INT1 Sel1 | INT1 Sel0 | Out Sel1 | Out Sel0 | |------|---------|----------|-----------|-----------|----------|----------| | | _ | | | | | | #### Table 33. CTRL_REG5 description | воот | OOT Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) | | |---------------|--|--| | FIFO_EN | Enable FIFO. Default value: 0 (0: FIFO disabled; 1: FIFO enabled) | | | HPen | Enable high-pass filter (see Figure 18). Default value: 0 (0: HPF disabled; 1: HPF enabled | | | INT1_Sel[1:0] | INT1 selection configuration (see Figure 18). Default value: 0 | | | Out_Sel[1:0] | Out selection configuration (see Figure 18). Default value: 0 | | Figure 18. INT1_Sel and Out_Sel configuration block diagram Table 34. Out_Sel configuration settings | HPen | Out_Sel1 | Out_Sel0 | Description | |------|----------|----------|--| | Х | 0 | 0 | Data in DataReg and FIFO are not high-pass filtered | | Х | 0 | 1 | Data in DataReg and FIFO are high-pass filtered | | 0 | 1 | х | Data in DataReg and FIFO are low-pass filtered by LPF2 | | 1 | 1 | х | Data in DataReg and FIFO are high-pass and low-pass filtered by LPF2 | Table 35. INT_SEL configuration settings | HPen | INT_Sel1 | INT_Sel2 | Description | |------|----------|----------|--| | Х | 0 | 0 | Non-high-pass-filtered data are used for interrupt generation | | Х | 0 | 1 | High-pass-filtered data are used for interrupt generation | | 0 | 1 | х | Low-pass-filtered data are used for interrupt generation | | 1 | 1 | Х | High-pass and low-pass-filtered data are used for interrupt generation | DS10938 - Rev 3 page 27/41 # 7.7 REFERENCE/DATACAPTURE (25h) #### Table 36. REFERENCE register | Ref7 | Ref6 | Ref5 | Ref4 | Ref3 | Ref2 | Ref1 | Ref0 | |------|------|------|------|------|------|------|------| | | | | | | | | | #### Table 37. REFERENCE register description | Ref 7-Ref0 Reference value for interrupt generation. Default value: 0 | |---|
---| # 7.8 OUT_TEMP (26h) #### Table 38. OUT_TEMP register | Temp7 | Temp6 | Temp5 | Temp4 | Temp3 | Temp2 | Temp1 | Temp0 | |---------|-------|-------|-------|-------|-------|----------|-------| | Terrip? | Tempo | Tempe | Temp | Tempo | Tempz | Terrip i | Tempo | #### Table 39. OUT_TEMP register description | Temp7-Temp0 | Temperature data | | |-------------|------------------|--| | Tompt Tompo | Tomporataro data | | # **7.9 STATUS_REG** (27h) #### Table 40. STATUS_REG register | ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA | |-------------------------------------| |-------------------------------------| #### Table 41. STATUS_REG description | ZYXOR | X-, Y-, Z-axis data overrun. Default value: 0 | |-------|--| | ZIXON | (0: no overrun has occurred; 1: new data has overwritten the previous data before it was read) | | ZOR | Z-axis data overrun. Default value: 0 | | ZOR | (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data) | | YOR | Y-axis data overrun. Default value: 0 | | TOR | (0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous data) | | XOR | X-axis data overrun. Default value: 0 | | AUR | (0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous data) | | ZYXDA | X, Y, Z-axis new data available. Default value: 0 | | ZIXDA | (0: a new set of data is not yet available; 1: a new set of data is available) | | ZDA | Z-axis new data available. Default value: 0 | | ZDA | (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) | | YDA | Y-axis new data available. Default value: 0 | | TDA | (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) | | XDA | X-axis new data available. Default value: 0 | | ADA | (0: new data for the X-axis is not yet available; 1: new data for the X-axis is available) | | | | DS10938 - Rev 3 page 28/41 ## 7.10 OUT_X_L (28h), OUT_X_H (29h) X-axis angular rate data. The value is expressed as two's complement. # 7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) Y-axis angular rate data. The value is expressed as two's complement. #### 7.12 OUT Z L (2Ch), OUT Z H (2Dh) Z-axis angular rate data. The value is expressed as two's complement. ## 7.13 FIFO_CTRL_REG (2Eh) #### Table 42. FIFO_CTRL_REG register | FM2 | FM1 | FM0 | WTM4 | WTM3 | WTM2 | WTM1 | WTM0 | |-----|-----|-----|------|------|------|------|------| | | | | | | | | | #### Table 43. FIFO_CTRL_REG register description | FM2-FM0 | FIFO mode selection. Default value: 000 | |-----------|--| | WTM4-WTM0 | FIFO threshold. Watermark level setting. | #### Table 44. FIFO mode configuration | FM2 | FM1 | FM1 FM0 FIFO mo | | | | |-----|-----|-----------------|-------------|--|--| | 0 | 0 | 0 | Bypass mode | | | | 0 | 0 | 1 | FIFO mode | | | | 0 | 1 | 0 | Stream mode | | | ## 7.14 FIFO_SRC_REG (2Fh) #### Table 45. FIFO_SRC_REG register | WTM | OVRN | EMPTY | FSS4 | FSS3 | FSS2 | FSS1 | FSS0 | |-------|------|---------|------|-------|------|------|-------| | VVIIV | OVEN | LIVIETI | F554 | 1 333 | FSS2 | F331 | 1 330 | #### Table 46. FIFO_SRC register description | WTM | Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal to or higher than WTM level) | |-----------|---| | OVDNI | Overrun bit status. | | OVRN | (0: FIFO is not completely filled; 1: FIFO is completely filled) | | EMPTY | FIFO empty bit. | | EIVIPTT | (0: FIFO not empty; 1: FIFO empty) | | FSS4-FSS1 | FIFO stored data level | DS10938 - Rev 3 page 29/41 # 7.15 INT1_CFG (30h) #### Table 47. INT1_CFG register | AND/OD | 1.15 | 71.115 | 71.15 | Value | VIII | NA IIIE | VIJE | |--------|------|--------|-------|-------|------|---------|------| | AND/OR | LIR | ZHIE | ZLIE | YHIE | YLIE | XHIE | XLIE | #### Table 48. INT1_CFG description | AND OD | AND/OR combination of interrupt events. Default value: 0 | |-------------|---| | AND/OR | (0: OR combination of interrupt events 1: AND combination of interrupt events | | | Latch interrupt request. Default value: 0 | | LIR | (0: interrupt request not latched; 1: interrupt request latched) | | | Cleared by reading INT1_SRC (31h). | | ZHIE | Enables interrupt generation on Z high event. Default value: 0 | | ZIIIL | (0: disable interrupt request; 1: enable interrupt request on measured rate value higher than preset threshold) | | ZLIE | Enables interrupt generation on Z low event. Default value: 0 | | ZLIL | (0: disable interrupt request; 1: enable interrupt request on measured rate value lower than preset threshold) | | YHIE | Enables interrupt generation on Y high event. Default value: 0 | | · · · · · · | (0: disable interrupt request; 1: enable interrupt request on measured rate value higher than preset threshold) | | YLIE | Enables interrupt generation on Y low event. Default value: 0 | | TEIE | (0: disable interrupt request; 1: enable interrupt request on measured rate value lower than preset threshold) | | XHIE | Enables interrupt generation on X high event. Default value: 0 | | XIIIL | (0: disable interrupt request; 1: enable interrupt request on measured rate value higher than preset threshold) | | XLIE | Enables interrupt generation on X low event. Default value: 0 | | ALIL | (0: disable interrupt request; 1: enable interrupt request on measured rate value lower than preset threshold) | Configuration register for interrupt source # 7.16 INT1_SRC (31h) #### Table 49. INT1_SRC register | 0 IA | ZH | ZL | YH | YL | XH | XL | |------|----|----|----|----|----|----| |------|----|----|----|----|----|----| #### Table 50. INT1_SRC description | IA | Interrupt active. Default value: 0 | |----|---| | IA | (0: no interrupt has been generated; 1: one or more interrupts have been generated) | | ZH | Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) | | ZL | Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) | | YH | Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) | | YL | Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) | | XH | X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) | | XL | X low. Default value: 0 (0: no interrupt, 1: X low event has occurred) | Interrupt source register. Read-only register. Reading at this address clears the INT1_SRC IA bit (and eventually the interrupt signal on the INT1 pin) and allows the refresh of data in the INT1_SRC register if the latched option is chosen. DS10938 - Rev 3 page 30/41 # 7.17 INT1_THS_XH (32h) #### Table 51. INT1_THS_XH register | | THSX14 | THOYAG | THOYAG | THOYAA | THOYAG | THOYO | THOYO | |---|--------|--------|--------|--------|--------|-------|-------| | - | 1H5X14 | THSX13 | THSX12 | THSX11 | THSX10 | THSX9 | THSX8 | #### Table 52. INT1_THS_XH description | THSX14 - THSX8 | Interrupt threshold. Default value: 0000 0000 | | |----------------|---|--| |----------------|---|--| # 7.18 INT1_THS_XL (33h) #### Table 53. INT1_THS_XL register | THSX7 | THSX6 | THSX5 | THSX4 | THSX3 | THSX2 | THSX1 | THSX0 | |---------|--------|--------|--------|--------|---------|---------|---------| | 1110/11 | 111070 | 111070 | 111074 | 111070 | 1110/12 | 1110/(1 | 1110/10 | #### Table 54. INT1_THS_XL description | THSX7 - THSX0 | Interrupt threshold. Default value: 0000 0000 | |---------------|---| |---------------|---| # 7.19 INT1_THS_YH (34h) #### Table 55. INT1_THS_YH register | - | THSY14 | THSY13 | THSY12 | THSY11 | THSY10 | THSY9 | THSY8 | | |---|--------|--------|--------|--------|--------|-------|-------|--| | | | | | | | | | | #### Table 56. INT1_THS_YH description | THSY14 - THSY8 Interrupt threshold. Default value: 0000 0000 | |--| |--| ## 7.20 INT1_THS_YL (35h) #### Table 57. INT1_THS_YL register | THSY7 | THSY6 | THSY5 | THSY4 | THSY3 | THSY2 | THSY1 | THSY0 | 1 | |--------|--------|--------|--------|--------|--------|--------|--------|---| | 111017 | 111010 | 111010 | 111017 | 111010 | 111012 | 111011 | 111010 | П | #### Table 58. INT1_THS_YL description | THSY7 - THSY0 | Interrupt threshold. Default value: 0000 0000 | |---------------|---| |---------------|---| ## 7.21 INT1_THS_ZH (36h) #### Table 59. INT1_THS_ZH register | - | THSZ14 | THSZ13 | THSZ12 | THSZ11 | THSZ10 | THSZ9 | THSZ8 | |---|--------|--------|--------|--------|--------|-------|-------| |---|--------|--------|--------|--------|--------|-------|-------| #### Table 60. INT1_THS_ZH description | THSZ14 - THSZ8 Interrupt threshold. Default value: 0000 0000 | THSZ14 - THSZ8 | Interrupt threshold. Default value: 0000 0000 | |--|----------------|---| |--|----------------|---| DS10938 - Rev 3 page 31/41 #### 7.22 INT1_THS_ZL (37h) #### Table 61. INT1_THS_ZL register | THSZ7 | THSZ6 | THSZ5 | THSZ4 | THSZ3 | THSZ2 | THSZ1 | THSZ0 | |-------|-------|-------|-------|-------|-------|-------|-------| | | | | | | | | | #### Table 62. INT1_THS_ZL description | THSZ7 - THSZ0 |
Interrupt threshold. Default value: 0000 0000 | | |---------------|---|--| |---------------|---|--| ## **7.23** INT1_DURATION (38h) #### Table 63. INT1_DURATION register | WAIT | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------|----|----|----|----|----|----|----| | 1 | | | | | | | | #### Table 64. INT1_DURATION description | WAIT | | Enables WAIT bit. Default value: 0 (0: disable; 1: enable) | |-------|---|--| | D6-D0 |) | Duration value. Default value: 000 0000 | The **D6 - D0** bits set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen. The **WAIT** bit has the following meaning: Wait = 0: the interrupt falls immediately if the signal crosses the selected threshold. Wait = 1: if the signal crosses the selected threshold, the interrupt falls only after the duration has counted a number of samples at the selected data rate, written into the duration counter register. Figure 19. Wait disabled • Wait bit = 0 → Interrupt disabled as soon as condition is no longer valid (ex: Rate value below threshold) DS10938 - Rev 3 page 32/41 Figure 20. Wait enabled # • Wait bit = 1 → Interrupt disabled after duration sample (sort of hysteresis) Duration value is the same used to validate interrupt DS10938 - Rev 3 page 33/41 # 8 Package information To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark. #### 8.1 LGA-16L package information Figure 21. LGA-14L 4 x 4 x 1.1 mm package outline and mechanical data | | Dimensions | | | | | | |------|------------|-------|-------|--|--|--| | Ref. | mm | | | | | | | Kei. | Min. | Тур. | Max. | | | | | A1 | | | 1.100 | | | | | A2 | | 0.855 | | | | | | A3 | | 0.200 | | | | | | d | | 0.300 | | | | | | D1 | 3.850 | 4.000 | 4.150 | | | | | E1 | 3.850 | 4.000 | 4.150 | | | | | L2 | | 1.950 | | | | | | М | | 0.100 | | | | | | N1 | | 0.650 | | | | | | N2 | | 0.975 | | | | | | P1 | | 1.750 | | | | | | P2 | | 1.525 | | | | | | T1 | | 0.400 | | | | | | T2 | | 0.300 | | | | | | k | | 0.050 | | | | | # Outline and mechanical data DS10938 - Rev 3 page 34/41 # **Revision history** Table 65. Document revision history | Date | Date Version Changes | | |-------------|----------------------|---| | 20-Apr-2015 | 1 | Initial release | | 21-Apr-2015 | 2 | First public release | | 15-Oct-2024 | 3 | Updated product summary table Added 10-year longevity product label | DS10938 - Rev 3 page 35/41 # **Contents** | 1 | Bloc | k diagr | am and pin description | 2 | | | | | | |---|-------|----------------------|---|----|--|--|--|--|--| | | 1.1 | Pin de | scription | 3 | | | | | | | 2 | Mec | hanical | and electrical characteristics | 5 | | | | | | | | 2.1 | Mecha | anical characteristics | 5 | | | | | | | | 2.2 | Electri | cal characteristics | 6 | | | | | | | | 2.3 | Tempe | erature sensor characteristics | 6 | | | | | | | | 2.4 | Comm | nunication interface characteristics | 7 | | | | | | | | | 2.4.1 | SPI - serial peripheral interface | 7 | | | | | | | | | 2.4.2 | I ² C - inter IC control interface | 8 | | | | | | | | 2.5 | Absolu | ute maximum ratings | 9 | | | | | | | | 2.6 | Termin | nology | 10 | | | | | | | | | 2.6.1 | Sensitivity | 10 | | | | | | | | | 2.6.2 | Zero-rate level | 10 | | | | | | | | | 2.6.3 | Stability over temperature and time | 10 | | | | | | | | 2.7 | Solder | ing information | 10 | | | | | | | 3 | Main | Main digital blocks1 | | | | | | | | | | 3.1 | Block | diagram | 11 | | | | | | | | 3.2 | FIFO . | | 12 | | | | | | | | | 3.2.1 | Bypass mode | 12 | | | | | | | | | 3.2.2 | FIFO mode | 13 | | | | | | | | | 3.2.3 | Stream mode | 13 | | | | | | | | | 3.2.4 | Retrieving data from FIFO | 14 | | | | | | | 4 | Appl | lication | hints | 15 | | | | | | | 5 | Digit | tal inter | faces | 16 | | | | | | | | 5.1 | I ² C ser | rial interface | 16 | | | | | | | | | 5.1.1 | I ² C operation | 16 | | | | | | | | 5.2 | SPI bu | us interface | 18 | | | | | | | | | 5.2.1 | SPI read | 19 | | | | | | | | | 5.2.2 | SPI write | 20 | | | | | | | | | 5.2.3 | SPI read in 3-wire mode | 21 | | | | | | | 6 | Outp | out regi | ster mapping | 22 | | | | | | | 7 | Regi | ster de | scription | 23 | | | | | | | | 7.1 | WHO_ | _AM_I (0Fh) | 23 | | | | | | | | 7.2 | | _REG1 (20h) | | | | | | | | | 7.3 | CTRL_ | _REG2 (21h) | 25 | | | | | | | | | | | | | | | | | | | 7.4 | CTRL_REG3 (22h) | . 26 | |------|---------|------------------------------|------| | | 7.5 | CTRL_REG4 (23h) | . 26 | | | 7.6 | CTRL_REG5 (24h) | . 27 | | | 7.7 | REFERENCE/DATACAPTURE (25h) | . 28 | | | 7.8 | OUT_TEMP (26h) | . 28 | | | 7.9 | STATUS_REG (27h) | . 28 | | | 7.10 | OUT_X_L (28h), OUT_X_H (29h) | . 29 | | | 7.11 | OUT_Y_L (2Ah), OUT_Y_H (2Bh) | . 29 | | | 7.12 | OUT_Z_L (2Ch), OUT_Z_H (2Dh) | . 29 | | | 7.13 | FIFO_CTRL_REG (2Eh) | . 29 | | | 7.14 | FIFO_SRC_REG (2Fh) | . 29 | | | 7.15 | INT1_CFG (30h) | . 30 | | | 7.16 | INT1_SRC (31h) | . 30 | | | 7.17 | INT1_THS_XH (32h) | . 31 | | | 7.18 | INT1_THS_XL (33h) | . 31 | | | 7.19 | INT1_THS_YH (34h) | . 31 | | | 7.20 | INT1_THS_YL (35h) | . 31 | | | 7.21 | INT1_THS_ZH (36h) | . 31 | | | 7.22 | INT1_THS_ZL (37h) | . 32 | | | 7.23 | INT1_DURATION (38h) | . 32 | | 8 | Packa | age information | .34 | | | 8.1 | LGA-16L package information | . 34 | | Revi | ision h | iistory | .35 | | List | of tabl | les | .38 | | List | of figu | ıres | .40 | # **List of tables** | Table 1. | Pin description | 3 | |-----------|---|------| | Table 2. | Filter values | | | Table 3. | Mechanical characteristics | 5 | | Table 4. | Electrical characteristics | | | Table 5. | Temperature sensor characteristics | | | Table 6. | SPI slave timing values | | | Table 7. | I ² C slave timing values | 8 | | Table 8. | Absolute maximum ratings | | | Table 9. | PLL low-pass filter component values | . 15 | | Table 10. | Serial interface pin description | . 16 | | Table 11. | I ² C terminology | . 16 | | Table 12. | SAD+read/write patterns | . 17 | | Table 13. | Transfer when master is writing one byte to slave | . 17 | | Table 14. | Transfer when master is writing multiple bytes to slave | . 17 | | Table 15. | Transfer when master is receiving (reading) one byte of data from slave | | | Table 16. | Transfer when master is receiving (reading) multiple bytes of data from slave | | | Table 17. | Register address map | | | Table 18. | WHO_AM_I register | | | Table 19. | CTRL_REG1 register | | | Table 20. | CTRL_REG1 description | | | Table 21. | DR and BW configuration | | | Table 22. | Configuration of power mode selection | | | Table 23. | CTRL_REG2 register | | | Table 24. | CTRL_REG2 description. | | | Table 25. | High-pass filter mode configuration | | | Table 26. | High-pass filter cutoff frequency configuration [Hz] | | | Table 27. | CTRL_REG3 register | | | Table 28. | CTRL_REG3 description. | | | Table 29. | CTRL_REG4 register | | | Table 30. | CTRL_REG4 description | | | Table 31. | Self-test mode configuration | | | Table 32. | CTRL_REG5 register | | | Table 33. | CTRL REG5 description. | | | Table 34. | Out_Sel configuration settings | | | Table 35. | INT_SEL configuration settings | | | Table 36. | REFERENCE register | | | Table 37. | REFERENCE register description | | | Table 38. | OUT TEMP register. | | | Table 39. | OUT TEMP register description. | | | Table 40. | STATUS REG register | | | Table 41. | STATUS REG description. | | | Table 42. | FIFO_CTRL_REG register | | | Table 43. | FIFO_CTRL_REG register description | | | Table 44. | FIFO mode configuration | | | Table 45. | FIFO SRC REG register | | | Table 46. | FIFO_SRC register description | | | Table 47. | INT1_CFG register. | | | Table 47. | INT1 CFG description | | | Table 46. | INT1_SRC register. | | | Table 49. | INT1_SRC description | | | Table 50. | INT1_THS_XH register | | | Table 51. | INT1_THS_XH register | | | Table 52. | INT1_THS_XH description | | | เสมเซ อง. | IIVI I THO ALICYISICI | . ગા | ## **I3G4250D** | Table 54. | INT1_THS_XL description | 31 | |-----------|---------------------------|----| | Table 55. | INT1_THS_YH register | 31 | | | INT1_THS_YH description | | | Table 57. | INT1_THS_YL register | 31 | | Table 58. | INT1_THS_YL description | 31 | | Table 59. | INT1_THS_ZH register | 31 | | Table 60. | INT1_THS_ZH description | 31 | | Table 61. | INT1_THS_ZL register | 32 | | Table 62. | INT1_THS_ZL description | 32 | | | INT1_DURATION register | | | | INT1_DURATION description | | | Table 65. | Document revision history | 35 | | | | | # **List of figures** | Figure 1. | Block diagram | . 2 | |------------|---|-----| | Figure 2. | Pin connections | . 3 | | Figure 3. | I3G4250D external low-pass filter | . 4 | | Figure 4. | SPI slave timing diagram | . 7 | | Figure 5. | I ² C slave timing diagram | . 8 | | Figure 6. | Block diagram | 11 | | Figure 7. | Bypass mode | 12 | | Figure 8. | FIFO mode | 13 | | Figure 9. | Stream mode | 13 | | Figure 10. | FIFO access sequence in asynchronous mode | 14 | | Figure 11. | I3G4250D electrical connections and external component values | 15 | | Figure 12. | Read and write protocol | 18 | | Figure 13. | SPI read protocol | 19 | | Figure 14. | Multiple byte SPI read protocol (2-byte example) | 19 | | Figure 15. | SPI write protocol | 20 | | Figure 16. | Multiple byte SPI write protocol (2-byte example) | 20 | | Figure 17. | SPI read protocol in 3-wire mode | 21 | | Figure 18. | INT1_Sel and Out_Sel configuration block diagram | 27 | | Figure 19. |
Wait disabled | 32 | | Figure 20. | Wait enabled | 33 | | Figure 21. | LGA-14L 4 x 4 x 1.1 mm package outline and mechanical data | 34 | #### **IMPORTANT NOTICE - READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2024 STMicroelectronics – All rights reserved DS10938 - Rev 3 page 41/41